
Page 1

POSIX: A CASE STUDY IN A SUCCESSFUL STANDARD

OR, WHY WE DON’T NEED RADICAL CHANGE IN THE SDO PROCESS

Stephen R. Walli
Softway Systems, Inc.

185 Berry Street, Suite 5514,
San Francisco, CA 94107

stephe@interix.com

Abstract

The standards processes of the various Standards Development Organizations (SDO)
have been accused for the last decade of being too slow to keep pace with technological
innovations surrounding such areas as the Internet and the World Wide Web (WWW).
There are those that go so far as to suggest that the standards directly conflict with the
ability to innovate (while at the same time providing a constant interface against which to
develop this new networked world.)

This is incorrect and at best a marketing platform from which companies can attempt to
push their own solutions as the “standard” solution. This paper looks at the history of
one standard developed against a tumultuous background and its complete success in the
face of counter-marketing. It demonstrates why the SDO process served it well and
resisted changes that could have had a catastrophic effect. Relationships with industry
consortia are explored in relationship to the POSIX family of standards, and their
supportive role. It closes with observations for the future of the SDO process

Page 2

1. Introduction

The standards development organizations (SDO)
have been accused for the past decade of being
too slow to keep pace with the technological
innovations surrounding areas such as the
Internet and the World Wide Web (WWW).
Taking the time to develop a standard through
the SDO process is tantamount to destroying our
ability to quickly move forward to seize the
technological day. It is customary marketing
practice to at once claim to conform to all
existing relevant standards while at the same
time suggesting that the SDO process should be
sped up to allow the next great leaps to occur.
Marketing practices use the spectre of becoming
technology Ludites to counter the customer
demand for standards-based (i.e. vendor
independent) solutions.

This conflict between customers desiring vendor
independent solutions, and vendors desiring long
term customer relationships meets in the
standards arena. The reality is that the standards
process embodied in the SDOs is not broken and
requires no revolutionary change beyond the
simple evolution of any successful process.

To demonstrate this reality, we will look at a
large standards effort (POSIX) that was
developed through two de jure SDO processes
and become a market success through ubiquitous
implementation and adoption by commercial
consortia, in the face of continual marketing
about its lack of success.

2. POSIX: A Brief History

POSIX is a family of standards developed
through the IEEE and ISO/IEC. POSIX stands
for Portable Operating System Interface for
Computing Systems. It describes the operating
system service interface, based on UNIX existing
practice and experience, and exists to permit
application programs to be written that are
source code portable across multiple diverse
operating systems. It was born out of work in
the early 1980s led by a UNIX users group, aptly
named /usr/group, which was attempting to re-
integrate the diverging AT&T System V and
Berkeley CSRG system interfaces in what was
known as The 1984 /usr/group Standard [1]. In
1985, the Technical Committee on Operating
Systems – Standards Subcommittee (TCOS-SS)

of the Institute of Electrical and Electronic
Engineers (IEEE) began work under the auspices
of the ANSI accredited IEEE Standards Board to
build a formal de jure standard around the idea
of source code portable applications with respect
to the operating system service interface. By
April 1986, an IEEE Trial-Use Standard was in
place. The first standard was formally ratified in
August 1988, as IEEE 1003.1-1988 (hereafter
referred to as POSIX.1). It was at that time
aligned with the developing ANSI accredited X3
work in X3J11 to develop the C-language
standard, which became an ANSI standard in
1989[2]. The POSIX work was being carried
forward into the ISO/IEC community by 1989
and work began through ISO/IEC JTC1
Subcommittee 22 (Programming Languages),
Working Group 15 (POSIX) to guide the IEEE
developed work through the ISO standards
process. In 1990, POSIX.1 was aligned with the
formally approved C-language standard and re-
ratified as both IEEE 1003.1-1990 [3](an ANSI
standard) and ISO/IEC 9945-1:1990. The only
difference between the two documents was the
white cover on the ISO/IEC document.

POSIX.1 covers just the system service
applications programming interface (API). It is
by its own scope and introduction a minimal
standard to cover the essential system services.
It was expected that further POSIX standards
within the “family” would cover other
functionality. And the IEEE POSIX work grew.

By 1990, there were 10 approved projects, and
upwards of 300 people attending working group
meetings quarterly. Work had begun on a
Commands and Utilities standard (POSIX.2),
test methodologies standards to address
conformance testing issues (POSIX.3) along
with test methods for the POSIX.1 work, real-
time API (POSIX.4), work for POSIX.1 in Ada
and FORTRAN77 (POSIX.5 and POSIX.9), and
profiling work in the super computing domain
(POSIX.10). Work continued to grow through
the first half of the 1990s, such that at one point
there were approximately 25 projects spread
across about 16 working groups. Co-ordination
committees sprung up around common themes
(e.g. test methods, profiles, base API). Along
the way, TCOS-SS became the Portable
Applications Standards Committee (PASC) still
under the auspices of the IEEE Standards Board.

Then participation began to fall off. This
happened for a number of reasons. As some

Page 3

standards documents completed, people no
longer needed to attend those projects. Some
documents were particularly contentious, and
made little progress so interest waned in that
work. The recession deepened, and participation
continued to fall as employers cut back standards
based expenditures. (UNISYS cut almost its
entire standards organization at one point in its
restructuring. This was the company that at one
time had the greatest participation of the vendors
at POSIX meetings). As of this writing (Spring
1999) the quarterly working groups have about
25-40 participants. Much of the work surrounds
U.S. military-based requirements for additional
real-time interfaces, and co-ordination activities
to complete some well defined extensions into
the base documents and work with the Open
Group to ensure best use of resources and to
ensure efforts aren’t duplicated.

3. The [Unsung] POSIX Success
Story

The POSIX standards efforts are often painted as
a failure by vendor organizations wanting to
escape the expensive yoke of standards
conformance. As SDO do not have marketing
organizations, it is often difficult for them to
defend these accusations with counter-marketing.
Concerns are raised with respect to the POSIX
family of standards in such areas as:
• Falling participation (How can “POSIX”

still be relevant?)
• Lack of ratified functionality (One can’t do

enough with just “POSIX” to be useful.)
• “POSIX” takes too long. (If “POSIX”

doesn’t hurry up, it won’t be relevant.)

In each of these items, “POSIX” is placed in
quotations because each of these supposed
failures relies on a listener’s ignorance or lack of
context on what “POSIX” is under discussion.

Failing participation has been discussed. At
some time, work on a project stops. It is either
complete (a standard exists) or not. In either
case the participants (modulo some maintenance
function) go home.

The latter two issues are completely incorrect.
The PASC working groups have produced on the
order of 27 standards, many of them ratified
through ISO, numbering in the thousands of
pages over the past 14 years.

Of all the POSIX standards, several stand out.
• IEEE 1003.1-1990 == ISO/IEC 9945-1:1990
• IEEE 1003.2-1992 == ISO/IEC 9945-2:1993
• IEEE 1003.1b-1993 (POSIX Real-time)
• IEEE 1003.1c-1993 (POSIX Threads)

These have become a core set of functionality
implemented on a wealth of operating systems.

POSIX has also always had powerful patrons on
the customer side. The United States
government took an early supportive view of the
POSIX family of standards. The National
Institute of Standards and Technology (NIST,
formerly the National Bureau of Standards)
contributed staff to the IEEE and ISO POSIX
efforts from the beginning. As a major
representative of the user community, able to
literally put their money where their mouth was
on procurement policy, they were able to act as a
fundamental anchoring influence. They stood to
greatly benefit from a successful standard in this
space for applications portability, i.e. vendor
independence. They sunk considerable effort as
was the policy of those days into a certification
process, and the attendant supportive standards
work around test methods.

The United States government is the largest
single organization procuring computer
equipment in the world. Using the POSIX.1
Federal Information Processing Standard (FIPS)
151-2 [4] and its POSIX Certification Test Suite
(PCTS), it acted as a huge impetus to developing
POSIX.1 certified implementations. 1 At this
point operating systems as diverse as Windows
NT, Compaq/Digital’s VMS, and IBM’s
OpenEdition MVS have been certified along
with all mainstream versions of the UNIX
operating system.

The core POSIX.1 standard is over ten years old
(1988) along with its certification programme. It
is widely implemented. Applications that have
been ported at least once since 1989 with the
advent of POSIX.1 and ISO/ANSI C have been
generally modified to use the standard library

1 It is important to note that NIST was never so
foolish as to claim that a POSIX FIPS certificate
was a guarantee of conformance to the standard.
An operating system is far to complex to
completely test, so the FIPS certificate merely
states that the implementation (operating system
under test) has run the PCTS, and the results
have been verified and validated.

Page 4

and system service interfaces. New applications
written in C on UNIX systems are written to
these standards.

The POSIX standards also form the core of the
industry’s Single UNIX Specification. POSIX is
so successful at this point as to be invisible. It is
taken for granted by the customer community
that purchased platforms support a POSIX.1
system service interface and an ISO/ANSI C-
language compiler will be available.

4. The Consortia Relationship

The relationship between the formal POSIX
standards and UNIX industry consortia is a
synergistic (if contentious) one. Individual
consortia members and the consortia themselves
attended IEEE and ISO POSIX working group
meetings and were very active standards
development participants. Once ratified, the
consortia then adopted the formal standards,
adding functionality where necessary to satisfy
their own paying membership community. Both
processes benefitted.

While the IEEE was taking on the task of
developing POSIX in 1985 in North America, an
industry consortium was formed in Europe
amongst the UNIX vendors of the day to tackle
the same problem of providing a basis for
applications portability at the demands of the
customers. The BISON group was formed (Bull,
ICL, Siemens, Olivetti, and Nixdorf) which
shortly thereafter became X/Open. The X/Open
Portability Guide (XPG) was developed and
largely described the System V Interface
Definition (SVID).

X/Open developed a branding programme,
whereby the vendor not only passes a rigorous
test environment, but further warrants that they
conform to the specification. If anyone proves
they do not conform to the specification
(regardless of their test suite results) the vendor
is legally obligated to fix the implementation.

X/Open membership grew to include the North
American and Far East vendors, and worked to
attract the POSIX buying customer base. The
only way to do this was to align with POSIX.
By XPG, Issue 4 (1992) [5], the X/Open industry
specifications were completely aligned with
POSIX.1, POSIX.2, and ANSI/ISO C, and had

publicly stated their commitment to continuing
the alignment in the future.

In 1994, X/Open published the Single UNIX
Specification as an update to XPG4, adding a
wealth of traditional system service and library
interfaces found on UNIX systems [6]. A UNIX
95 brand was created shortly thereafter. If one
ignores the obvious duplication of interfaces
(provided to support porting historical
applications), there is an 80% overlap in the
interface definitions between POSIX.1 and
ANSI/ISO C. (This overlap continues between
POSIX.2 and the X/Open Commands and
Utilities specification in the Single UNIX
Specification.)[7][8][9].

By 1998, X/Open and the Open Software
Foundation (OSF) another fundamental but
complementary UNIX industry consortium had
merged into The Open Group, and the next
version of the Single UNIX Specification was
released with its attendent UNIX98 branding
programme. The fundamental additions to the
SUS were POSIX.1b (Real-time), POSIX.1c
(threads), and additional work on symbolic link
interfaces that are currently being added to an
amendment of POSIX.1. While there was
additional work added, the 80% overlap was still
very much in effect.

Ratified and well implemented standards from
the IEEE and ISO formal processes were
incorporated into the core “UNIX” specification
of the day. X/Open (and The Open Group)
certainly contributed a great deal to the process
of developing POSIX in the de jure processes,
open to all, then adopted and incorporated the
formal work into their specifications, adding
work that was important to their paying
membership community.

As the economic fall-out of the recession caused
vendor membership in consortia to re-evalute
their standards and specifications participation in
both the de jure process as well as the consortia
process, many players rankled at the apparent
“double” cost to develop the specifications they
ultimately required. To that end, all of the IEEE
PASC POSIX working groups, the ISO/IEC
POSIX WG15, and The Open Group’s Base
Working Group are looking at ways to ensure
that there is no duplication of effort in this
process. This process evaluation and evolution
makes sense at this point in the history of the
POSIX standards.

Page 5

5. Why Does the POSIX De Jure
Model Work

Despite the public complaints (from vendors)
with the POSIX process being too slow, and
standardizing old technology, a number of things
about the formal POSIX model seem to have
supported its success:
• The IEEE process allows any group of

people to come together to form a standard.
All it essentially takes is three people, a base
document, and the desire to build a standard
according to the formal rules. This does not
mean it is easy to create a standard. It
merely means that the process caters to any
sized group willing to come to an agreement
on a standard. More complex standards with
larger circles of interest will obviously
require greater consensus efforts to come to
closure. The process scales itself.

• There is also a process by which standards
that no one has modified or referenced in
five years to be reaped as unused.

• Sponsorship of several projects that saw no
progress within the working groups was
withdrawn, i.e. the rules allow the body
responsible for sponsorship to close
unworkable projects.

At the same time, the early work of PASC (then
TCOS-SS) was based on existing UNIX practice
and experience, with base documents feeding the
standards process that documented implemented
proven ways of accomplishing the task. This is
very similar to the Internet Engineering Task
Force mandate for multiple non-descended
reference implementations being required before
an RFC can be considered complete. This
requirement of a burden of implementation
provides is incredibly useful.
• It provides a focus to the working groups

discussions. With POSIX.1, POSIX.2, and
the ANSI C work, consensus could be more
easily driven around a customer perspective
of whether or not existing applications
would be broken if particular changes were
made. Likewise, the working group
members (both users and vendors) had a
strong understanding of the problem domain
being standardized.

• From the IETF perspective, it ensures that
more than the idea’s originator sees
sufficient merit in the idea to attempt real
economic work to develop the
implementation.

POSIX also had a powerful patron in the U.S.
government participation. While balloting
groups within the IEEE require a certain balance
of users and developers, it is often easy of lone
individual users to be overwhelmed by the work
load inherent in a large complex standards
development project. Having a well funded
knowledgeable user to solidly debate and
balance large well funded vendor initiatives.

It should not be easy to create a standard in a
contensious space. Having the entire SDO
process go through a revolution to allow this to
happen, or worse yet to replace SDOs with
industry consortia with no obligation to include
any voices other than their own members will
break the process of developing good standards.

It is a matter of good government that most
democratic governments are based upon a two
house system of one form or another, whereby
there are checks and balances in the process to
ensure that special interest groups and lobbyists
cannot “buy” or drive their way to a law quickly.
A government is simply unable to quickly and
easily create law. (Indeed any Canadians may
remember the outrage at Brian Mulroney’s
conservative government that managed to
“stack” the senate, Canada’s upper house, such
that he could drive through certain unpopular tax
legislation.)

So should it be with standards development. It
should not be easy in the face of controversy to
force a standard. The present desire to radically
change the various formal standards processes to
create more standards faster is economically
unsound. The economics of standards is such
that standards documents provide a contract for
how interfaces work such that large diverse
groups can provide and use implementations of
the domain (whether it is computer technology
or film in a camera). This supports a commodity
economic view of the world encouraging
competition. Standards will be developed
wherever there exists sufficient need, by
participants willing to put their money where
their mouth is to do work. These processes
should be open to all knowledgeable participants
without undue burden (e.g. high membership
fees).

POSIX was developed in such a process.
Despite marketing to the effect that POSIX is
past due, old technology, and underdeveloped,
the reality is the process has led to the

Page 6

development of a set of formal specifications,
based upon proven ways to solve a set of
problems in applications portability, that have
weathered a decade of implementation and use.

References
1. The 1984 /usr/group Standard, published by

/usr/group, Santa Clara, California, USA.
2. ISO/IEC 9899:1990, Programming

LanguagesC,
3. ISO/IEC 9945-1:1990, Information

Technology Portable Operating System
Interface (POSIX) Part 1: System
Application Program Interface (API) [C
Language], IEEE Standards, NJ, ISBN 1-
55937-061-0

4. National Institute of Standards and
Technology, Federal Information Processing
Standards Publication 151-2, Portable
Operating System Interface (POSIX) -
System Application Program Interface [C
Language], 12 May, 1993.

5. X/Open CAE Specification:
• System Interfaces and Headers, Issue 4,

Release 2
• Release 2 Commands and Utilities, Issue 4,
• System Interface Definitions, Issue 4,

Release 2
 X/Open Company Ltd., 1994

6. Walli, Stephen R., Go Solo: How to
Implement and Go Solo with the Single
UNIX Specification, Prentice Hall,
Englewood Cliffs, NJ, 1995

7. ISO/IEC 9945-2:1993, Information
Technology Portable Operating System
Interface (POSIX) Part 2: Shell and
Utilities, IEEE Standards, NJ, ISBN 1-
55937-255-9

8. JTC1/SC22/WG15 N622, The Relationship
between the X/Open SUS & ISO POSIX,
Source: X/Open, 1995-10-01

9. JTC1/SC22/WG15 N639, U.S. Position on
Single UNIX Specification, Source: U.S.
Member Body, 1995-04-17

